Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform
نویسندگان
چکیده
Mounting evidence for the role of sleep spindles in neuroplasticity has led to an increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here, we present a new sleep spindle detection algorithm utilizing a continuous wavelet transform (CWT) and individual adjustment of slow and fast spindle frequency ranges. Eighteen nap recordings of ten subjects were used for algorithm validation. Our method was compared with both a human scorer and a commercially available SIESTA spindle detector. For the validation set, mean agreement between our detector and human scorer measured during sleep stage 2 using kappa coefficient was 0.45, whereas mean agreement between our detector and SIESTA algorithm was 0.62. Our algorithm was also applied to sleep-related memory consolidation data previously analyzed with a SIESTA detector and confirmed previous findings of significant correlation between spindle density and declarative memory consolidation. We then applied our method to a study in monozygotic (MZ) and dizygotic (DZ) twins, examining the genetic component of slow and fast sleep spindle parameters. Our analysis revealed strong genetic influence on variance of all slow spindle parameters, weaker genetic effect on fast spindles, and no effects on fast spindle density and number during stage 2 sleep.
منابع مشابه
Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing
Sleep spindles are critical in characterizing sleep and have been associated with cognitive function and pathophysiological assessment. Typically, their detection relies on the subjective and time-consuming visual examination of electroencephalogram (EEG) signal(s) by experts, and has led to large inter-rater variability as a result of poor definition of sleep spindle characteristics. Hitherto,...
متن کاملAn Automatic Sleep Spindle Detector based on WT, STFT and WMSD
Sleep spindles are the most interesting hallmark of stage 2 sleep EEG. Their accurate identification in a polysomnographic signal is essential for sleep professionals to help them mark Stage 2 sleep. Sleep Spindles are also promising objective indicators for neurodegenerative disorders. Visual spindle scoring however is a tedious workload. In this paper three different approaches are used for t...
متن کاملEvaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms
Sleep spindles are brief bursts of brain activity in the sigma frequency range (11-16 Hz) measured by electroencephalography (EEG) mostly during non-rapid eye movement (NREM) stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Convention...
متن کاملK-Complex Detection Based on Synchrosqueezing Transform
K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies inneurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this patternare of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysisof this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocat...
متن کاملStage - independent , single lead EEG sleep spindle detection using the 1 continuous wavelet transform and local weighted smoothing
1 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK 4 2 Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK 5 3 Sleep and Circadian Neuroscience Institute, Nuffield Department of Medicine, University of Oxford, UK 6 4 Department of Biomedical Informatics, Emory University, Atlanta, Georgia, USA ...
متن کامل